
WPDV

i NASA Contractor Report 182056N

CNN ICASE INTERIM REPORT 11

The Preprocessed Doacross Loop

Joel H. Saltz
Ravi Mirchandaney

NASA Contract No. NAS1-18605 D T IC
May 1990 ELEC

ELECTEIOCT03 1990

E D
INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE A ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

SDISTRIBUT1ON STATEM E

Approved for public relese";
Distribution Unlimited

National Aeronautics and
Space Administration

Langley R earch Center 90 10 0) 0 (

Hampton, Virginia 23665-5225

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many years. The blue reports are intended as preprints of
research that has been submitted for publication in either refereed journals or
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed form. It will be used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibliographies, and for computer
software. The Interim Reports will receive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

cre ssi-on For

Cys GRA&I
2: iC .2...

1P icatio Robert G. Voigt

Director
By

\DistributiOn/

AvailabilitY CodeS
1 Avnil and/or

Dst Ispecial

/ \

II

The Preprocessed Doacross Loop

Jod H. Saltz
ICASE NASA Langley Research Center

Hampton, VA 23665

Rai Mirchandaney
Department of Computer Science

Yale University
New Haven, CT 06520

May 29, 1990

Abstract

: Dependencies between loop iterations cannot always be charac-
terized during program compilation. Doacross loops typically make
use of a-priori knowledge of inter-iteration dependencies to carry out
required synchronizations. We propose a type of doacross loop that
allows us to schedule iterations of a loop among processors without
advance knowledge of inter-iteration dependencies. The method pro-
posed for loop iterations requires us to carry out parallelizable pre-
processing and postprocessing steps during progr m execution. . -

*This work was supported%! NASA grant NASI-18605 while the authors were in

residence at ICASE, NASA Langley Research Center

1 Introduction

Dependencies between loop iterations cannot always be characterized during
program compilation. This inability to characterize dependencies can inhibit
exploitation of potential parallelism if one is restricted to usual types of
parallel loop constructs, i.e. doall or doacross loops [3] [2]. Doall loops do
not impose any ordering on loop iterations while doacross loops impose a
partial execution order in the sense that some of the iterations are forced
to wait for the partial or complete execution of some previous iterations.
Typically, doacross loops make use of a-priori knowledge of inter-iteration
dependencies to carry out required synchronizations.

The method we outline here is a variant of a doacross loop that allows
us to schedule iterations of a loop onto processors in the absence of prior
knowledge about inter-iteration dependencies. We call this type of doacross
loop the preprocessed doacross.

We use symbolic transformations to produce from a given loop: (1) inspec-
tor procedures that perform execution time preprocessing, and (2) executors
or transformed versions of source code loop structures. These transformed
loop structures carry out the calculations planned in the inspector procedures.
Characterizing the cost of execution time preprocessing is a critical aspect of
this research. One requirement is that the execution time preprocessing itself
be parallelizable. The preprocessing required for the preprocessed doacross
loop is fully parallelizable.

In Section 2, we describe the preprocessed doacross parallel construct,
and in Section 3 we present results from two sets of experiments designed to
characterize the performance tradeoffs manifest by using this construct.

2 The Preprocessed Doacross Loop

2.1 Overview

A doacross loop is frequently used when one needs to parallelize loops with
non-independent loop iterations. Typically it is necessary, before executing
the loop, to know the distances of dependencies between statements in dif-
ferent loop iterations. It is possible to carry out a simple form of execution
time preprocessing that eliminates the need to know dependency distances.

2

o i=l,N

y(a(i)) = y(b(i))
nd do

Figure 1: Loop with Execution Time Determined Dependencies

parallel do i=,N
§1: while(ready(b(i)) .eq.NOTDONE)

endwhile

S2: y(i) = y(b(i)).....

S3: ready(i) = DONE

end parallel do

Figure 2: Parallelized Loop with True Dependencies

In Figure 1, we present a code fragment that will be used to demonstrate

the structure of the inspector and executor loops in a simplified preprocessed

doacross loop. We assume that there are no output dependencies between

left hand side array references; in Figure 1 this means that no two elements

of array a have the same value.

We first assume that all dependencies are true dependencies, i.e., a(i)
= i and b(i) < i. As we show in Figure 2, we can use a shared array

ready to make certain that the data dependencies are satisfied. Before the

loop executes, ready is initialized to NOTDONE; when a new array element

y(i) is calculated, we set ready(i) = DONE (statement S3). When y(b(i))

is required to satisfy a dependence in Figure 2, a busy wait is carried out

(Statement Sl) until y(b(i)) has been calculated.

In the case when some of the b(i) > i, the dependence relations be-

tween loop iterations are in fact antidependencies. To accommodate these

antidependencies, we transform the loop in Figure 1 so that during the course

of the computation, all writes to y in Figure 1 are transformed into writes to

3

a new array ynew. A reference to y(b(i)) in Figure 1 may or may not have
already been written to during an earlier loop iteration. When b(i) < i,
we use ynew(b(i)) in the right hand side of the transformed loop and when
b(i) > i we use y(b(i)). In many cases it will be necessary to copy the
newly computed elements of ynew back into y after the computation in the
loop is done.

If we do not assume that a(i) is equal to i, the order in which elements
of y are written in the sequential loop (Figure 1) is determined by integer
array a. When a right hand side array element y(b(i)) needs to be accessed,
we will need to determine whether we should use an old or an updated value
of y. If y(b(i)) in Figure 1 is written to during an earlier loop iteration j <
i we use y(b(i)) in the transformed code, otherwise we use ynew(b(i)).
An array iter can be initialized during a preprocessing phase, so that

e the value i is stored in iter(a(i))

e all other elements of iter(a(i)) are set equal to a large integer (MAXINT).

If iter(a(i)) < i for some iteration i of the transformed loop, a true de-
pendency involving y exists and we use y(b(i)). Alternately, if iter(a(i))
> i we use ynew(b(i)).

In order to limit the cost of initialization and the use of memory associated
with this implementation of the doacross construct, we reuse the same arrays
iter and ready for multiple preprocessed doacross loops. A (parallclized)
postprocessing phase can be carried out after the loop is finished during
which iter(a(i)) is set equal to MAXINT and ready(a(i)) is set equal to
NOTDONE. Figure 3 serves to summarize pre and postprocessing required for
the preprocessed doacross loop.

2.2 A More Complex Example

In this section, we will examine in some detail how the doacross transforma-
tions would be carried out in a slightly more complex case. Following this
exposition, experimental results obtained from this example will be presented
in Section 3.

In the loop S1 in Figure 4, up to M+1 separate elements of y are read (otice
that the inner loop goes from 1 to M). The right hand side elements of y in

4

Preprocessing

arallel do i=l,N
iter(a(i)) = i

nd parallel do

Postprocessing

parallel do i=1,N
iter(a(i)) = MAXINT

ready(a(i)) = NOTDONE
yold(a(i)) = ynew(a(i))

end parallel do

Figure 3: Pre and Postprocessing Steps

iteration i may or may not have dependency relations with any loop itera-
tion of S1 (including iteration i itself). Any dependency can be either a true
dependency or an antidependency. Figure 5 depicts a transformed version of
the loop shown in Figure 4. As was described in Section 2.1, iter(a(i)) is
set to i before the parallelized loop is executed. When iter(b(i)+nbrs (j))
is less than or equal to i, we use ynew, the newly computed value of y (state-
ments S5 and S8). Note that when iter(bi)+nbrs(j)) is strictly less than
i (statement S3), it is necessary to make sure that the true dependency is sat-
isfied. When iter(b(i)+nbrs(j)) is equal to i, wedo not busy wait because
the dependency is within iteration i. Finally, when iter(b(i)+nbrs(j))
is greater than i, either a reference to y from some later loop iteration is
related to y(b(i)+nbrs(j)) by an antidependency relation or alternately,
y(b(i)+nbrs(j)) is not writtcn to anywhere in the loop nest. In either
case, we use the old value of y and do not busy wait (statement S7). After
the parallelized loop is completed, postprocessing analogous to that depicted
in Figure 3 is carried out.

S1 do i1l,N
do j=l,M
y(a(i)) = y(a(i)) + val(j)*y~b(i) + nbrs(j))
end do

end do

Figure 4: Preprocessed Doacross Test Loop

S1 parallel do i=L,N
S2 ynew(a(i)) = y(a(i))

do j=1,M

offset =b(i) + nbrs(j)
check =iter~off set) - i

3 if(check.lt.O) then
34 while(ready(off set) .ne.DONE)

endwhile
35 ynew(a(i)) = ynew(a(i)) + val(j)*y-new(offset)
6 else if (check.gt.O)
S7 ynew(a(i)) = ynew(a(i)) + vals(j)*y(offset)

else
38 ynew(a(i)) = ynew(a(i)) + vals(j)*ynew(offset)

end if
end do

ready~a~i)) = DONE
nd parallel do

Figure 5: Parallelized Preprocessed Doacross Test Loop

6

2.3 Further Variants

The transformations we have described in this paper utilize several arrays to
schedule the iterations in parallel. These arrays will typically be the size of
the index set, resulting in large utilization of memory. There are a number of
ways in which the memory used by the preprocessed doacross can be reduced.
It is possible to transform the original loop L into a pair of nested loops Lmn, 7

and L,,,t.r. The inner loop Linner would range over contiguous iterations of
the original loop L. Loop Lir would be parallelized using the preprocessed
doacross methods described above; loop L,,,t would be carried out in a

sequential manner. Preprocessing and postprocessing involving arrays ready,
iter , ynew , and yold is carried out before and after each set of Li.ner

iterations. This transformation reduces memory requirements because during
each iteration of Louter we can reuse ready and iter.

When the left hand side arrays are indexed by a linear subscript function
(i.e. a(i) is replaced by some known linear function c x i + d). it is possible
to eliminate the execution time preprocessing phase along with the need to
allocate storage for array iter. For the loop depicted in Figure 4, we can
determine whether y(b(i) + nbrs(j)) can be written to by testing to see
whether (b(i) + nbrs(j) - d mod c) is equal to 0. If a write is carried out
it occurs during loop iteration (b(i) + nbrs(j) - d)/c.

3 Performance of Preprocessed Doacross

In this section, we provide experimental results for the performance of the
inspectors and executors described in Section 2. The following timings were
done on an Encore Multimax/320 with 13 megahertz APC/02 boards and
version 2.1 of the FORTRAN compiler. Parallel efficiency is defined as
Taq/(p * Tpr), where Teq is the time required to solve a problem using an
optimized sequential version, Tp is the time required on the same problem
using a parallel code on p processors.

3.1 Preprocessed Test Loop

In this section we report on some experiments to characterize the performance
of the preprocessed doacross loop construct. We consider Figure 4, where we
have initialized arrays nbrs and a, such that nbrs(j) = 2j-L, and a(i)

7

= 2i. We parallelize this loop using the preprocessed doacross construct.
In the data presented below, we assess the costs of the preprocessing and
postprocessing outlined in Section 2.1. So that we may be better able to
interpret the test results, in Figure 5, we have chosen to initialize a using
a simple linear left hand side array index subscript function. We use the
transformations described in Section 2.2.

In Figure 6 we depict parallel efficiencies on 16 processors obtained when
we set N equal to 10000, M equal to either 1 or 5, and varied L from 1 to
14. Recall that in loop S1 in Figure 4, up to M + 1 separate elements of y
are read. For odd numbered values of L, there are no dependencies between
outer loop iterations. The efficiencies we see for those L values reflect the
overheads of:

1. performing the runtime preprocessing and postprocessing

2. performing execution time dependency checks

For M equal to 1 and 5 efficiencies observed for odd L values are approximately
33% and 50% respectively.

The efficiencies for even values of L increase monotonically for both values
of M. This is understandable because as L increases, the number of outer loop
iterations between dependencies also increases.

3.2 Sparse Triangular Solves

We now consider a slightly different test loop which is used to solve sparse
triangular systems of equations. Many of the sparse triangular systems we
use for model problems arise from incompletely factored matrices obtained
from a variety of discretized partial differential equations. The solution of
these sparse triangular systems accounts for a large fraction of the sequential
execution time of linear solvers that use Krylov mnthods[1]. The data de-
pendencies between the elements of y are determined by the values assigned
to the data structure column during program execution. These dependencies
inhibit the parallelization of the outer loop (statement S1, Figure 7). A de-
scription of the structure of the triangular systems used in our experiments
is found in [11, outlined in the appendix is a brief description of how these
systems were generated.

8

Effect of Loop parameters on Ffficiency of PReprocessed oco r)sIde r
0. F

0 M 5

0.5 -

0.4I

U
C-

Q)0.2

0 2 4 6 8 10 12 14

Figare 6: Preprocessed Doacross Efficiencies

9

1 do i=l,n
y(i) = rhs(i)

do j=low(i),high(i)
y(i) = y(i) - a(j)*y(column(j))

end do
end do

Figure 7: A Sparse Triangular Solve

Table 1: Preprocessed Doacross Times for Sparse Triangular Matrices
Test Preprocessed Preprocessed Doacross Sequential

Problem Doacross Iterations Rearranged Time (ms)
Time (ms) Time (ms)

SPE2 34 21 223

SPE5 45 23 241

5-PT 37 19 192

7-PT 84 56 616

9-PT 97 58 698

The loop in Figure 7 was parallelized on 16 processors and the paral-
lelized and sequential times for the test matrices examined arc depicted in
Table 1. The timings obtained corresponded to parallel efficiencies between
0.32 to 0.46. A modified loop was produced by carrying out the loop itera-
tions in a more advantageous order. This reordering of loop iterations leaves
the inter-iteration dependencies unchanged but reduces the effects of these
dependencies on performance. The mechanism for carrying out this iteration
reordering is described in [4] and is called a Doconsider transformation. The
resulting loop is parallelized using the preprocessed doacross mechanism and
the results are presented below in Table 1. Parallel efficiencies depicted in
that table range from 0.63 to 0.75.

10

4 Conclusion

The preprocessed doacross loop is a type of doacross loop that allows us
to schedule loop iterations onto processors without prior knowledge of inter-
iteration dependencies. We have demonstrated that such a loop structure can
allow parallelization of loops that would not otherwise be easily parallelized.
The overheads required to parallelize loops in this manner can be substantial
but should not prevent us from achieving overall performance gains in niary
cases.

5 Appendix: Definition of Test Triangular
Systems

The the triangular systems referred to in Section 3.2 were derived from the
following partial differential equation discretizations:

SPE2 This problem arises from the thermal simulation of a steam injection
processes. The grid is 6x6x5 with 6 unknowns per grid point, this
yields a system with 1080 equations. The matrix is a block seven point
operator with 6x6 blocks.

SPE5 This problem arises from a fully-implicit, simultaneous solution sim-
ulation of a black oil model. It is a block seven point operator on a
16x23x3 grid with 3x3 blocks yielding 3312 equations.

5-PT The problem is a five point central difference discretization on a 63 x

63 grid; this yields a system with 3969 equations.

7-PT The problem is a seven point central difference discretization on a 20
x 20 x 20 grid; this yields a system with 8000 equations.

9-PT The problem is a nine point box scheme discretization on a 63 x 63
grid; this yields a system with 3969 equations.

References

[1] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An exper-

imental study of methods for parallel preconditioned krylov methods. In

11

Proceedings of the 1988 Hypercube Multiprocessor Conference, Pasadena
CA, pages 1698,1711, January 1988.

[2] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In The
Proceedings of the ICPP, 1986, pages 836-844, 1986.

[3] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors
and compilation techniques. IEEE Trans. on Computers, 29(9):763-776,
September 1980.

[4] J. Saltz, R. Mirchandaney, and K. Crowley. The doconsider loop. In Pro-
ceedings of the 1989 ACM International Conference on Supercomputing ,
Crete, Greece, pages 29-40, June 1989.

12

NASA Report Documentation Page

1 Report No. 2. Government Accession No. I 3. Recipient's Catalog No.
NASA CR-182056
ICASE Interim Report No. 11

4. Title and Subtitle 5. Report Date

May 1990
THE PREPROCESSED DOACROSS LOOP

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Joel H. Saltz Interim Report 11

Ravi Mirchandaney 10. Work Unit No.

9. Performing Organization Name and Address 505-90-21-01

Institute for Computer Applications in Science 11. Contract or Grant No.
and Engineering NASI-18605

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report
16. Abstract

Dependencies between loop iterations cannot always be characterized during
program compilation. Doacross loops typically make use of a-priori knowledge
of inter-iteration dependencies to carry out required synchronizations. We propose
a type of doacross loop that allows us to schedule iterations of a loop among
processors without advance knowledge of inter-iteration dependencies. The method
proposed for loop iterations requires us to carry out parallelizable preprocessing
and postprocessing steps during program execution.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
59 - Mathematical and Computer Sciencesdependencies, 1oops, shared memory, (General)

doacross, compilation, runtime, inspector, 6 GCperP mS

execution 61 - Computer Programming and Software

Unclassified - Unlimited

19. Security Classif. (of this report) 20. Security Classif, (of this page) 21. No, of pages 22. Price
Unclassified Unclassified 14 A03

NASA FORM 1626 OCT 86

NASA-Langiey, 1990

